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A linear stability analysis as well as nonlinear simulations are performed in order
to analyse the coupling between the directional solidification of a binary alloy and
the flow in its melt. An incompressible, potential flow model is assumed, whose
validity is tested through comparisons with the accompanying experiments of Zhang
& Maxworthy (2002) in a Hele-Shaw cell. The linear stability analysis predicts that
a uniform flow parallel to the interface reduces the growth rates of directional
solidification instabilities. In addition, the dominant wavelength is shifted to larger
values by the flow, and a small propagation velocity in the downstream direction is
observed. These findings are confirmed by the nonlinear simulations as well. While
the overall stabilization is confirmed by the experiments, the predicted values of the
dominant wavenumber and its growth rate are too high by factors of two and four,
respectively. These differences are attributed to the existence of a velocity boundary
layer in the melt, which strongly affects the lateral solute transport.

1. Introduction

In part 1 of this work (Zhang & Maxworthy 2002), the effect of a uniform
parallel flow on a directional solidification process in a Hele-Shaw cell is analysed
experimentally. The authors observe that such flows in general reduce the growth rate
of the interfacial instability, without noticeably altering the dominant wavelength.
While the experimental data do not suggest a substantial propagation velocity of the
perturbations as a result of the externally imposed flow, the growing cells are seen to
tilt against the direction of the flow once they reach large amplitudes. The present
analysis complements part 1, in that it focuses on the linear stability behaviour of
a directionally solidifying interface in the presence of a Hele-Shaw flow, and it also
presents some simulation results for the early nonlinear phase.

As can be seen from the literature survey given in part 1, the present experimental
and computational investigation represents a further step in the ongoing effort to
understand the coupling mechanisms between the solidification process and convective
flow in the melt. From the early stability analysis of Mullins & Sekerka (1964) it
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FIGURE 1. Sketch of the problem under consideration. A Hele-Shaw cell containing a binary alloy
is pulled against the direction of an externally imposed temperature gradient. The preferential
rejection of solute at the solidifying interface sets up a concentration boundary layer, which can
give rise to an instability of the solidification process. The effect of a nominally uniform flow parallel
to the interface on the solidification process is to be analysed.

was realized that such an understanding is essential in order to design processes for
growing high-quality crystals from binary melts. Hurle (1969, 1977) and Delves (1968,
1971) describe early investigations into the coupling of flow and solidification. More
recently, the effects of a variety of externally imposed flow fields on the stability
of the solidifying interface have been analysed in great detail. Coriell et al. (1984)
perform a linear stability analysis in the presence of a Couette flow, while Forth &
Wheeler (1989, 1992) focus on the effects of an asymptotic suction profile. Davis and
colleagues analyse the effects of time-dependent, stagnation-point and various other
flow features (Brattkus & Davis 1988a,b; Schulze & Davis 1994, 1995, 1996). The
coupling of morphological instabilities with cellular convection is addressed by Biihler
& Davis (1998), Caroli et al. (1985a,b), Dantzig & Chao (1986, 1990) and Chen &
Davis (1999). More recently, the effects of flow on fully developed dendrites have
been investigated computationally by Tong, Beckermann & Karma (2000), Tonhardt
& Amberg (1998, 2000). Comprehensive reviews of the field are provided by Sekerka
(1968) and Glicksman, Coriell & McFadden (1986) and Davis (1990, 1993).

In the present investigation, we focus on an externally imposed uniform flow
parallel to the solidifying interface. Section 2 describes the physical problem along
with the governing equations. In § 3, the linear stability analysis is performed and the
results discussed. Section 4 focuses on nonlinear simulations for the early stages of
the solidification process. In addition to the uniform parallel flow, the effects of a
source/sink combination are discussed as well. Finally, § 5 summarizes the findings
and presents conclusions.

2. Physical problem and governing equations

We consider the solidification process of a binary alloy between two closely spaced,
horizontal plates forming a Hele-Shaw cell, as shown in figure 1. The gap is assumed
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to be sufficiently narrow to suppress any buoyancy-driven convection. The entire
Hele-Shaw cell moves with constant velocity V' in the —z-direction, through an
externally imposed temperature field T(z) with constant gradient. The solid/melt
interface extends along the x-direction. If the solidification process takes place in a
stable fashion, a steady state will be reached in which the interface remains stationary
in a laboratory reference frame, at the location where the temperature equals the
solidification temperature. However, it is well known on the basis of both linear
stability theory (Mullins & Sekerka 1964) and experimental investigations (e.g. Rutter
& Chalmers 1953; Boettinger et al. 1984; Trivedi, Sekhar & Seetharaman 1989) that
preferential rejection of solute at the interface can result in a concentration boundary
layer that renders the solidification process unstable if a critical pulling velocity V.
is exceeded. In the absence of flow in the melt, this instability is referred to as pure
morphological instability. The purpose of the present investigation is to quantify the
effects of a uniform flow of strength U, parallel to the interface on the instability.

The investigation will be based on the set of gap-averaged, two-dimensional equa-
tions as formulated by Davis (1990). In the laboratory reference frame, the concen-
tration field in the melt is governed by the convective—diffusive equation

¢+ (u+-V)e— Ve, = DV, (2.1)

where the velocity field in the melt is assumed to be incompressible and irrotational
in nature:

u=Vveo, (2.2)

Vi =0. (2.3)

Obviously, the potential flow approach precludes us from imposing a no-slip condition
at the interface, and from resolving the corresponding velocity boundary layer, whose
thickness is of the order of the gap width of the Hele-Shaw cell. The question arises
as to whether Taylor dispersion effects may be important regarding the evolution of
the concentration field within the narrow gap of the Hele-Shaw cell (Petitjeans et al.
1999). However, for the gap width, maximum flow velocity and molecular diffusivity
employed in part 1, an estimate based on the analysis by Horne and Rodriguez (1983)
shows the Taylor dispersion coefficient to be roughly two orders of magnitude smaller
than the molecular diffusion coefficient. As a result, the effects of Taylor dispersion
can safely be neglected in the present investigation. By assuming that (i) the thermal
diffusivity is much larger than the diffusion coefficient of the solute, (ii) the thermal
diffusion coefficients of the solid and the melt are identical, and (iii) the accumulation
of latent heat L at the interface is negligible, we can apply the frozen temperature
approximation (Langer 1980)

T = T, + Gz. (2.4)

Here G represents the externally applied temperature gradient, and T, indicates
an arbitrary reference temperature. Thermodynamics states that the temperature T;
at the interface varies with the slope m of the liquidus line in the phase diagram
according to

Ty = me™ + Ty (1 + 2H%> , (2.5)

where T), is the melting temperature of a planar interface of pure solid, y denotes
the surface energy, while H represents the local interfacial curvature

H =1V -[(1+|VhJ*)~'/>Vh]. (2.6)
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By combining equations (2.4), (2.5) and (2.6), one obtains

To — T + Gh = met + TM%2H. (2.7)

The solute balance across the interface is
(1 =k)c*(V +h) = —D(ci —clhy), (2.8)

where ¢™ and ¢~ denote the concentration values on the liquid and solid sides
of the interface, respectively. This discontinuity in the concentration field across the
interface is caused by preferential rejection, which can be quantified by the segregation
coefficient k,

k=< (2.9)

=
As boundary condition for the velocity field at the solid/melt interface, we have

¢
— = h,. (2.10)
b«
In addition, far away from the interface, we apply
¢. — 0. (2.11)

The entire problem is considered to be periodic in the spanwise x-direction. In order
to render the above equations and boundary conditions dimensionless, we introduce
characteristic scales for length (D/V), velocity (V), time (D/V?), temperature (GD/V)
and concentration (c,(1 — k)/k). In this way, we obtain the dimensionless equations
as

¢ Fucy +we, — ¢, = Cxx + Cay (2.12)
¢, — hyc
hy=——"— "> 1 2.13
' (1—ket+1 7 (213)
1
Clomp =t = _Mh +RH, (2.14)
1 hxx
"=ty mpe 1)
c|z%oo =—1, (216)
Vi =0. (2.17)

In addition to the dimensionless parameters k and U (U = U,,/V), we thus obtain
_mk—=1)c .,V mG,

M — =T, (2.18)
R=— (2.19)

M indicates the ratio of the destabilizing concentration gradient at the interface to the
stabilizing externally imposed temperature gradient, and R provides a dimensionless
value of the stabilizing surface energy parameter. Note that in part 1 a dimensionless
surface energy parameter is employed which is different from the present one by a
constant factor.
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3. Linear stability analysis

In the following, we will investigate the linear stability of the solid/melt interface
in the presence of a uniform flow in the x-direction with dimensionless velocity U.
The stationary base state is given by

h(x) =0, (3.1)
d(x) = Ux, (3.2)
t(z)=e*—1. (3.3)
We assume wavy perturbations of the shape
h(x,t) = h, e, (3.4)
P(x,2,1) = p(z) 1, (3.5)
c(x,z,t) = B(z) e, (3.6)

where w = 2n/A is the real wavenumber, ¢ = ¢, + ig; denotes the complex wave
velocity, and B(z) and ¢(z) represent the complex eigenfunctions of the concentration
and velocity potential perturbations, respectively. The perturbations grow at the rate
o = wq;. After substituting the above form of the perturbations into the governing
equations, subtracting out the base state, and linearizing, we obtain eigenfunctions of
the form

¢(z) = —1Uh, e™*%, (3.7)
B(Z) [Q —(14w)z +AeAZ] (38)

where
A= —7——\/1 +4w? + 4ioU — ding. (3.9)

The above shape of the eigenfunctions shows that the perturbation velocity field in
the direction tangential to the interface is in phase with the interfacial deformation:
it reaches a maximum above the crests, and a minimum in the valleys. On the other
hand, 0 is a complex quantity, so that the perturbation concentration field is shifted
in the streamwise direction with respect to the interfacial deformation. This leads us
to expect the existence of waves travelling along the interface. By eliminating ¢(z),
we obtain

1— T
J%[wqi—iwqr] + (1 —k) G MY 2
k m Lm
G-—mG, T . L
=G, + K m + MY 2 0 — 1Q,~> A+ (0, +i0)(1 + )|, (3.10)
m Lm
with
A=141 /T4 40’ +dwg + do(U —q,), (3.11)
5 1
o= ; (3.12)

G, 1+1[(g— /(g —U)?

0 _  (a—1D/g—U)
Ge  1+[(g— /(g — U

(3.13)
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FIGURE 2. Linear stability analysis: the effect of the uniform flow velocity U on the growth rate for
M =100, k = 0.1 and R = 107°. Increasing values of U are seen to be stabilizing.

After further algebraic manipulation, we arrive at the eigenvalue problem

F=R+i3=0, (3.14)
1 I{(D2 Qr
fR—Z[(l—k){M—i-z}_in — (1+w)Gc]
1-M Ro*> 0 0N 0 ~. 0
_{ T —GC}<1—I—\/7cosz) — g Vrsin g, (3.15)
S:Z{a)qr—(l—}—w)gj—l-gz <1+\/;COS§>
1-M Ro* O, .0
S B -2 rin (3.16)
where
F= \/(1 +4w? + 40q)? + 4o(U — q,)%, (3.17)
0 = arctan L s +4wa}. (3.18)

Equation (3.14) can be solved iteratively to obtain ¢, and ¢; as functions of o for
different values of the governing parameters.

Figure 2 shows the dispersion relations for different values of the dimensionless
mean velocity U, M = 100, k = 0.1 and R = 107, which represent typical parameter
values encountered in the accompanying experiments of part 1. It should be pointed
out that, in the absence of flow, the data agree with the earlier results by Mullins
& Sekerka (1964) on the pure morphological instability. The graph demonstrates
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FIGURE 3. Linear stability analysis: the effect of the uniform flow velocity U on the propagation
velocities of perturbation waves for M = 100, k = 0.1 and R = 1076, The interfacial waves travel in
the direction of the externally imposed flow, at velocities two to four orders of magnitude smaller
than the flow. For each value of U, a minimum of the propagation velocity is observed at an
intermediate wavenumber.

that an increase in the strength of the mean flow will reduce the growth rate of all
wavenumbers. This behaviour is similar to the results obtained by Coriell et al. (1984)
and Forth & Wheeler (1989) for Couette and boundary-layer-like viscous shear flows
in the melt. Both of these investigations show a stabilization of the morphological
instability by the forced shear flow in the melt, with respect to perturbations whose
wave vector is parallel to the flow. On the other hand, perturbations with wave
vectors perpendicular to the flow are unaffected by it. Interestingly, the investigation
of Coriell et al. (1984) shows that increasing shear leads to shorter wavelengths at
the onset of instability, while figure 2 demonstrates a shift to longer wavelengths for
increasing values of U.

Figure 3 shows the predicted values of ¢, for the same values of U. Clearly
the propagation velocity depends on the wavenumber, as well as on the strength
of the imposed flow. For all combinations of U, R and M, we find the waves to
travel in the downstream direction with a velocity roughly two to four orders of
magnitude less than that of the mean flow. In general, for a given wavenumber, the
propagation velocity increases with U. This observation resembles the findings of
Coriell et al. (1984), who show that a forced Couette flow leads to the appearance of
waves travelling in the downstream direction, with a velocity that increases with the
shear. Forth & Wheeler (1989), on the other hand, find that a suction-type boundary
layer profile can result in either upstream or downstream travelling waves.

Interestingly, figure 3 shows that for a given value of U there is an intermediate
wavenumber for which the propagation velocity has a minimum. Closer inspection
of the results shows that this wavenumber of minimum propagation velocity initially
drops with increasing values of U, before reaching an asymptotic plateau around
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FIGURE 4. Linear stability analysis: the effect of the stability parameter M on the growth rate for
U =10 k =0.1 and R = 107°. As for the case without flow, increasing the value of M leads to a
destabilization of the solidification process.
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FIGURE 5. Linear stability analysis: the dependence of the critical morphological number M, on
the strength U of the externally imposed uniform flow for k = 0.1 and R = 107°. M. grows
approximately linearly with U.

U = 10*. The propagation velocity of this wavenumber keeps increasing, however,
without showing any signs of saturation.

In order to investigate the effect of the stability parameter M on the dispersion
relationship in the presence of an externally imposed uniform flow, we focus on the
above parameter values for R and k, along with U = 10*. We observe that there exists
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FIGURE 6. Linear stability analysis: the effect of the externally imposed flow velocity U on the
maximum growth rate for M = 100, k = 0.1 and R = 107°. Increasing flow velocities are seen to

reduce the maximum growth rates.
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FIGURE 7. Linear stability analysis: the effect of the externally imposed flow velocity U on the
wavenumber of the most amplified perturbation for M = 100, k = 0.1 and R = 107°. Increasing
values of U shift the peak amplification towards longer waves.

a critical morphological number (M,.) below which the interface remains stable to
perturbations of all wavenumbers, cf. figure 4. By computing M, for different values
of U, we find that M, increases monotonically with U for the given values of R and k,
cf. figure 5. The data indicate an approximately tenfold increase of the critical value

for velocities around 3 x 10%.
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FIGURE 8. Linear stability analysis: the effect of the externally imposed flow velocity U on the cutoff
wavenumber for M = 100, k = 0.1 and R = 107°. Increasing values of U narrow the range of
unstable perturbation modes.

Figure 6 displays the effect of U on the maximum growth rate for the same
parameter combination as above. Increasing values of U are seen to uniformly reduce
the growth rate, i.e. to render the solidification process less unstable. At the same time,
increasing U leads to a reduction in both the most amplified wavenumber (figure 7)
and the cutoff wavenumber (figure 8).

In order to evaluate the influence of the surface energy parameter on the linear
stability, R was varied between 10~ and 2 x 107*, for M = 100 and k = 0.1. We
find that for relatively weak imposed flows such as U = 100, R has a negligible effect
on the dispersion relation. For stronger flows, however, the influence of R is more
substantial. Larger values of R are seen to reduce the growth rates and to reduce the
range of unstable wavenumbers, cf. figure 9.

Figure 10 displays the effect of R on the propagation velocity. The dashed line,
which intersects each parametric curve R = const. at the cutoff wavenumber, divides
the figure into an unstable and a stable region. Higher values of R are seen to
result both in a narrower range of unstable wavenumbers and in larger propagation
velocities. It should be pointed out that in the experiments in part 1, R is in the range
10® ~ 1075, The linear stability results show very small propagation velocities in this
range.

The physical mechanism behind the stabilization by the uniform flow parallel
to the interface is straightforward to recognize. As has been mentioned by several
authors before, e.g. Davis (1990), in the absence of flow excess solute accumulates
in the troughs of the wavy interface perturbations. In this way, the concentration
gradient in the melt at the interface is weakest in the trough and steepest at the
crest. This results in the faster (slower) growth of the crests (troughs), thereby leading
to the instability. The imposed flow parallel to the boundary now has the effect of
transporting solute-rich fluid from the troughs to the crests (figure 11). Simultaneously
it carries solute-impoverished fluid from the crests to the troughs. Overall it thus
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FIGURE 9. Linear stability analysis: the effect of the surface energy parameter R on the dispersion
relation for M = 100, k = 0.1 and U = 10* Increasing values of R are seen to be uniformly
stabilizing.
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FIGURE 10. Linear stability analysis: the effect of the surface energy parameter R on the propagation
velocity for M = 100, k = 0.1 and U = 10* Increasing values of R result in larger propagation
velocities. The dashed line divides the plane into a stable and an unstable parameter range.

renders the solute concentration gradient near the interface more uniform, which
leads to enhanced stability.

The effect on the wave propagation velocity can be explained in a similar fashion.
On the windward side of the crest, the potential flow shifts the weaker concentration
gradient up the slope, thus rendering this region more stable. On the other hand, the
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FIGURe 11. The physical mechanism behind the stabilization by a uniform flow parallel to the
interface. The milder concentration gradients forming in the troughs without flow are convected
towards the crests by the flow, prompting them to grow more slowly. Conversely, the steeper
concentration profiles that would evolve near the crests without flow, are brought closer to the
troughs by the external flow, thereby accelerating their growth.

leeward side experiences a lateral shift of the steeper concentration gradient down
the slope, which destabilizes it. In this fashion, a travelling wave in the direction of
the mean flow is generated.

4. Nonlinear simulations

4.1. Numerical technique
In order to investigate the nonlinear interaction of the unstable interface with the
externally imposed flow, we focus on a physical domain of size L, x L,. Consistent
with the stability analysis, we assume the problem to be periodic in the spanwise
x-direction. This allows us to employ a Fourier spectral technique in the x-direction,
so that we can decompose the interfacial boundary as

N

h(x,0) = ay(t)e™™™, (4.1)

n=—N

where a,(t) = a,,(t)+1a,,(t) represent the time-dependent complex Fourier coefficients.
We map the physical domain 0 < x < L., h < z < L, into the computational domain
0<é<l,0<p<1:

x(¢,m, 1) = LyS, (4.2)

N
2Emt)=Lap+(1—n) > ae ™™ (4.3)

n=—N

Note that this mapping will not allow us to simulate configurations in which h(x)
is not single-valued, so that we have to terminate the simulations before this would
occur. One arrives at the following transformed equations:

u 1 2
¢ = = pg e T lw (L= whn: —uny —nile, + Scee + I +ney + pallCen
(4.4)
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FIGURE 12. Validation of the nonlinear code. The growth rates of prescribed small perturbations in
the numerical simulations (circles) are compared with those obtained from linear stability theory
(lines) for M = 100, k = 0.1, R = 0.04, as well as U = 0, 10 and 50.

M6y — Pe *hzc: — Pe 'nchec,

h, = d—ke 11 —1, (4.5)
Cly=o =c" = —%h +RH, (4.6)
1 P€_2h§§
T2+ (Pethe P2 (4.7)
I (4.8)

Here Pe = VL,/D denotes the Péclet number formed with the length of the com-
putational domain in the direction parallel to the interface. A = L./L, represents
the aspect ratio of the computational domain. The above equations are discretized
by means of a Fourier spectral technique (Gottlieb & Orszag 1977) in the periodic
direction, and a compact finite difference method (Lele 1992) in the pulling direction.
The latter is of sixth-order accuracy in the interior, and of third-order near the
boundaries. The equations are advanced in time by means of a third-order Runge—
Kutta scheme (Wray 1991). The potential velocity field is represented by a boundary
element technique (Anderson 1991), which places source and sink panels of varying
strength along the boundary in order to satisfy the condition of vanishing normal
velocity. In order to satisfy the periodic boundary conditions, several mirror images
of the sources and sinks in the x-direction are taken into account when evaluating
the velocity field.

4.2. Validation

In order to validate the code, we performed simulations for individual wavy perturba-
tions of small amplitude (107°), whose growth rates and propagation velocities could
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FiGURE 13. Validation of the nonlinear code. The propagation velocities of small perturbations in
the numerical simulations (circles) are compared with those obtained from linear stability theory
(lines) for M = 100, k = 0.1, R = 0.04, as well as U = 0, 10 and 50.

then be compared with the results from linear stability theory. For a discretization
of 16 x 129 points in the x- and z-directions, respectively, the results are shown in
figures 12 and 13 for a parameter combination of R = 0.04, M = 100 and k = 0.1,
as well as imposed parallel velocities of U = 0, 10 and 50. The agreement is very
good with respect to the growth rates. For the relatively coarse discretization of the
validation simulations, the predicted propagation velocity is slightly too high.

4.3. Results
4.3.1. Uniform parallel flow

In order to investigate the nonlinear growth of the interfacial instability, we initially
impose perturbations corresponding to the first five modes, each with an amplitude
of 107 and a random phase. The resulting initial condition for the interfacial shape
is shown in figure 14. For the governing dimensionless parameter values of M = 100,
k = 0.1 and R = 0.04, the no-flow case will be compared with the uniform flow
case of U = 50. Note that, while the values of M and k are comparable to those
in the experiments part 1, we are forced to employ a larger value of R for reasons
of numerical resolution. The computational domain size is given by L, = 10 and
L, = 20. To allow better comparisons, the initial perturbation is exactly the same for
the no-flow case and for the externally imposed flow case of U = 50.

For U = 0, figures 15 and 16 display the temporal growth of the interfacial
perturbation, as well as the overall concentration field at the final time ¢t = 2.13. It
is interesting to note that the final interfacial shape has six maxima, even though
the initial interfacial perturbation contained only five of them. This evolution is in
good agreement with linear stability theory, which predicts modes six and seven to
be the fastest growing ones. Note that the solute rejected within the troughs becomes
trapped, thereby leading to locally weak concentration gradients. On the other hand,
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FIGURE 14. Initial condition for the solid/melt interfacial shape in the nonlinear simulations.

sharp concentration gradients emerge near the crests, prompting them to grow more
rapidly. This confirms the basic instability mechanism familiar from linear stability
theory of the pure morphological case.

With an imposed flow of U = 50, the interface is seen to be less unstable, cf.
the interfacial shapes depicted in figure 17, as well as the overall concentration field
shown in figure 18. For the present values of M, k and R, and an externally imposed
flow of U = 50, linear stability theory predicts a dominant mode with between three
and four wavelengths in the computational domain. This is once again confirmed by
the nonlinear simulation, which now exhibits four crests. These crests clearly migrate
in the downstream direction. However, as predicted by linear theory, the propagation
velocity is several orders of magnitude smaller than the externally imposed flow
velocity.

4.3.2. Source and sink flow

The final configuration to be investigated is that of a source/sink pair in the melt,
cf. figure 19. Again the flow is potential in nature, which distinguishes it from earlier
analyses such as the stagnation-point flow studied theoretically by Brattkus & Davis
(1988b). Employing a boundary layer approximation, those authors find that the
velocity component normal to the interface has a destabilizing influence. Specifically,
the flow is found to destabilize long waves. The authors furthermore observe unstable
perturbations travelling against the direction of the flow. A further, more recent
theoretical study by Cummings et al. (1999) addresses the effects of an irrotational
stagnation point flow on an isolated parabolic dendrite. The authors assume the
interface to be locally flat at the tip of the dendrite. Their linear stability analysis,
which excludes the effect of surface energy, shows the interface to be unstable.

The accompanying experiments in part 1 indicate that a stagnation-point flow in a
Hele-Shaw cell initially has a stabilizing influence, due to the convective heat transport
of the injected fluid, which impinges on the interface and melts it back. This effect
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FIGURE 15. Interfacial evolution for M = 100, k = 0.1 and R = 0.04, in the absence of flow. Even
though the initial perturbation had only five crests, for longer times we observe the growth of six
crests. This is in agreement with the results from linear stability theory, which predicts the largest
amplification rate for mode six.
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FIGURE 16. Overall concentration field at the final time t = 2.13 for M = 100, k = 0.1 and R = 0.04,
in the absence of flow. Steeper gradients are seen to form near the crests, while milder gradients
emerge in the troughs.

cannot be captured by the present simulations, as we impose the frozen temperature
approximation, which does not permit the convective transport of excess heat. After
the initial transients settle down, in part 1 the interface is observed to grow more
rapidly than in the case of no flow. For weak source flows, they furthermore find that
the evolving cells tilt against the direction of the flow, whereas for stronger source
flows the cells grow perpendicularly to the initially planar interface.
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FIGURE 17. Interfacial evolution for M = 100, k = 0.1, R = 0.04 and a uniform flow of U = 50. The
initial perturbation again is as shown in figure 14. Now only four crests are seen to grow to larger
amplitude, due to a further shift of the highest amplification rates to longer waves. At the same
time, the growing peaks can be seen to propagate slowly in the direction of the externally imposed
flow.
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FiGURE 18. Overall concentration field at the final time t = 3.79 for M = 100, k = 0.1, R = 0.04
and a uniform flow of U = 50. The solidification process remains unstable at this value of U.

In order to analyse the effects of sources and sinks in the flow, we place a source
of unit strength at the location (2.5,2.5), and a sink of equal but opposite strength at
(7.5,2.5). These locations remain fixed in time, i.e. they are unaffected by the pulling
of the cell in the —z-direction. The source/sink configuration is assumed to extend
infinitely in the periodic x-direction. The remaining dimensionless parameters are left
at their earlier values, i.e. M = 100, k = 0.1 and R = 0.04. The injected and withdrawn
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FIGURE 19. Sketch of the source/sink configuration.
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FiGURE 20. Interfacial evolution for M = 100, k = 0.1 and R = 0.04. A source and a sink of unit
strength are placed at (2.5,2.5) and (7.5,2.5), respectively. The initial perturbation of the interface
is identical to that of the above cases with uniform parallel flow. Overall, the unstable solidification
interface is observed to approach the source, while it recedes from the sink.

fluid has the temperature corresponding to the local value of the frozen temperature
assumption. Its solute concentration is given by the local value of the base state. The
initial interfacial shape is identical to the above case for uniform parallel flow.

The temporal evolution of the interface is shown in figure 20. Overall, the interfacial
growth is clearly unstable. However, there are pronounced differences between the
regions near the source and the sink. The crest nearest to the source quickly outgrows
its neighbours and soon becomes dominant. At the same time, the trough closest to
the sink evolves more rapidly than those next to it. The interface has a global tendency
to accelerate towards the source, and to melt back from the sink. A comparison of
figures 20 and 15 shows that the instability grows more rapidly in the presence of
the source and sink than in the absence of flow. This observation is in agreement
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FIGURE 21. Overall concentration field at the final time t = 2.12 for M = 100, k = 0.1 and
R = 0.04, with the unit strength source and sink placed as described in the text.

with the experiments in part 1, where it was found that, after the initial transients
die out, the interfacial instability grows more rapidly when sources and sinks are
present. It is also in line with the theoretical work of Brattkus & Davis (1988b),
who report that a stagnation point flow has a destabilizing influence on the interface.
Biihler & Davis (1998) as well as Chen & Davis (1999) consider the morphological
instability in the presence of a spatially periodic cellular convection flow in the melt
above the interface. This type of flow gives rise to a periodic array of converging and
diverging stagnation points along the interface, which is locally similar to the flow
generated by the present, periodic array of sources and sinks. If the wavelength of the
morphological instability is much shorter than the wavelength of the imposed cellular
flow, the authors find that the morphological instability becomes localized near the
converging stagnation points. Even though their analysis employs a viscous fluid in
contrast to our potential flow, figure 20 indicates such a localization as well. The
interfacial waves are seen to grow much more rapidly around the stagnation point
near the source than around the stagnation point next to the sink.

Figures 21 and 22 show the overall and perturbation concentration fields, respect-
ively, at the final time ¢t = 2.12. The source is seen to convect fluid with low solute
concentration towards the interfacial sections closest to it, thereby promoting locally
steeper concentration gradients that lead to accelerated growth. The high solute
concentration near the interface is transported in the spanwise direction towards the
region near the sink, where it results in a relatively mild concentration gradient that
inhibits interfacial growth.

5. Discussion and conclusions

Among the main findings from the above linear stability analysis are the obser-
vations that a uniform velocity parallel to the interface reduces the growth rate of
directional solidification instabilities and shifts the dominant wavelength to somewhat
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FIGURE 22. Perturbation concentration field at the final time ¢t = 2.12 for M = 100, k = 0.1 and
R = 0.04, with the unit strength source and sink placed as described in the text. The resulting flow
field is seen to enhance the concentration gradient near the source, while reducing it closer to the
sink. This provides an explanation for the rapid propagation of the interface towards the source,
while it melts away from the sink.

larger values, while causing the unstable waves to propagate slowly in the downstream
direction. This behaviour is confirmed by the nonlinear simulations. These observa-
tions are in good qualitative agreement with several previous theoretical investigations
(cf. Delves 1968, 1971; Coriell et al. 1984; Forth & Wheeler 1989; Schulze & Davis
1994, 1995) in the sense that the flow has a stabilizing influence. However, Hobbs
& Metzener (1991) find the presence of a constant-velocity flow with a boundary
layer profile destabilizing in the long-wave regime. In addition, most of the above
mentioned investigations have found interfacial waves travelling in the upstream di-
rection, which is in contrast to the present investigation. This difference can be traced
back to the assumption of viscous flow in the earlier analyses, along with the no-slip
boundary condition at the solidifying interface.

The accompanying experiments in part 1 show a stabilizing influence of the uniform
parallel flow as well. On the other hand, the dominant wavelength appears to be
unaffected, and a propagation velocity of the unstable waves is not observed. This is
perhaps not very surprising, considering the fact that linear stability theory predicts
propagation velocities two to four orders of magnitude smaller than the flow velocity,
which may be hard to measure in the experiments. The dominant wavelengths found
in part 1 are roughly twice the size predicted by linear theory, while the growth rates
are a factor of four lower. For more detailed comparison data, see the discussion in
part 1. These considerable differences regarding the dominant wavelengths and growth
rates indicate that in the experiments certain mechanisms may be important that are
not fully captured by the relatively simple, two-dimensional potential flow model
underlying the above linear stability analysis as well as the nonlinear simulations.
Foremost among these is the existence of a velocity boundary layer in the melt, next
to the solidifying interface. The fact that the no-slip condition has to be satisfied at
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this interface results in a local shear flow velocity profile that differs significantly from
the potential flow considered theoretically. This, in turn, has a strong influence on the
lateral solute transport, and hence on the local shape of the concentration boundary
layer next to the interface. The velocity boundary layer thickness will be roughly on
the order of the gap width, which in the experiments in part 1 usually is of the same
order or even larger than the dominant wavelength. As a result, during their linear
growth phase the emerging dendrites in the experiments are located entirely within the
velocity boundary layer, i.e. outside the region where the velocity field can be expected
to be irrotational. In addition, the solidifying interface in the experiment is not strictly
two-dimensional for the relatively large gap width employed in part 1. This is clearly
visible in some of the figures presented in part 1 for the late stages of dendritic
growth, but even for the early stages characterized by small perturbation levels, the
interface is expected to have some curvature in the cross-gap direction. Obviously, this
is not accounted for in the stability analysis or the nonlinear simulations. Thus, the
potential flow model employed here is seen to be able to predict some qualitatively
correct trends, but three-dimensional viscous simulations will be needed in order to
obtain quantitatively accurate predictions.

The authors gratefully acknowledge discussions with Professor S. H. Davis of
Northwestern University. This work was supported through the NASA Microgravity
Program, under grant number NAG8-1240.
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